Skip to main content
Log in

Flow Stress Evolution in Further Straining of Severely Deformed Al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To investigate the flow stress evolution in further straining of severely deformed Al sheets, a comprehensive model which considers both mechanical and metallurgical alterations is needed. In this study, constrained groove pressing (CGP) as a severe plastic deformation method, and a flat rolling process for further straining are utilized. Using basic mechanical models, strain and strain rate were calculated for this process. Dislocation density and flow stress evolutions were predicted by utilizing initial mechanical data, considering the ETMB (Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet) dislocation density model. Based on these model predictions, the combination of the CGP process with a further rolling process results in higher flow stresses than repeating the specific process discretely. This phenomenon can be attributed to the ability of the rolling process to produce a greater strain rate, which, in turn, leads to the higher flow stresses. Thorough data from the mechanical tests as well as X-ray diffraction profiles strongly support the validity of the model in the prediction of flow stress and dislocation density, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji and A. Rosochowski: CIRP Annals-Manuf. Technol., 2008, Vol. 57, pp. 716-735.

    Article  Google Scholar 

  2. I. Sabirov, M. Y. Murashkin and R. Z. Valiev: Mater. Sci. Eng. A, 2013, Vol. 560, pp. 1-24.

    Article  Google Scholar 

  3. A. Dodangeh, M. Kazeminezhad and H. Aashuri: Mater. Sci. Eng. A, 2012, Vol. 558, pp. 371-376.

    Article  Google Scholar 

  4. V. M. Segal: Mater. Sci. Eng. A, 1999, Vol. 271, pp. 322-333.

    Article  Google Scholar 

  5. R. Z. Valiev, Langdon T G,, Prog. Mater. Sci., 2006, Vol. 51, pp. 881-981.

    Article  Google Scholar 

  6. N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani: Mater. Sci. Eng. A, 2003, Vol. 350, pp. 108-116.

    Article  Google Scholar 

  7. J. Jiang, Y. Ding, F. Zuo and A. Shan: Scripta Mater., 2009, Vol. 60, pp. 905-908.

    Article  Google Scholar 

  8. V. Charkhesht, and M. Kazeminezhad: J. Mater. Eng. Perform., 2017, Vol. 26, pp. 1311–24.

  9. E. A. El-Danaf: Mater. Design, 2012, Vol. 34, pp. 793-807.

    Article  Google Scholar 

  10. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab and R. Z. Valiev: Mater. Sci. Eng. A, 2012, Vol. 554, pp. 105-115.

    Article  Google Scholar 

  11. S. Li, AA. Gazder, IJ. Beyerlein, CH. Davies, EV. Pereloma: Acta Mater., 2007, Vol. 55, pp. 1017-1032.

    Article  Google Scholar 

  12. Y. Estrin, L. S. Toth, A. Molinari and Y. Brechet: Acta Mater., 1998, Vol. 46, pp. 5509-5522.

    Article  Google Scholar 

  13. M. Goerdeler and G. Gottstein: Mater. Sci. Eng. A, 2001, Vol. 309, pp. 377-381.

    Article  Google Scholar 

  14. B. Mülders, M. Zehetbauer, G. Gottstein, P. Les, and E. Schafler, Mater. Sci. Eng. A, 2002, Vol. 324, pp. 244–250.

  15. G. V. S. S. Prasad, M. Goerdeler and G. Gottstein: Mater. Sci. Eng. A, 2005, Vol. 400, pp. 231-233.

    Article  Google Scholar 

  16. F. Roters, D. Raabe and G. Gottstein: Acta Mater., 2000, Vol. 48, pp. 4181-4189.

    Article  Google Scholar 

  17. A. Ma and F. Roters: Acta Mater., 2004, Vol. 52, pp. 3603-3612.

    Article  Google Scholar 

  18. L. S. Tóth, A. Molinari and Y. Estrin: J. Eng. Mater. Technol., 2002, Vol. 124, pp. 71.

    Article  Google Scholar 

  19. E. Hosseini and M. Kazeminezhad,, Int. J. Refract. Met. H., 2009, Vol. 27, pp. 605-610.

    Article  Google Scholar 

  20. E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2011, Vol. 50, pp. 1123-1135.

    Article  Google Scholar 

  21. E. Hosseini, M. Kazeminezhad, A. Mani and E. Rafizadeh, Comp. Mater. Sci., 2009, Vol. 45, pp. 855-859.

    Article  Google Scholar 

  22. E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2009, Vol. 46, pp. 902-905.

    Article  Google Scholar 

  23. E. Hosseini and M. Kazeminezhad: Mater. Design, 2011, Vol. 32, pp. 487-494.

    Article  Google Scholar 

  24. E. Hosseini and M. Kazeminezhad: Comp. Mater. Sci., 2010, Vol. 48, pp. 166-173.

    Article  Google Scholar 

  25. P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, and M.K. Mitra: Acta Mater., 2004, Vol. 52, pp. 5687–96.

  26. Z. Zhang, F. Zhou, and E. J. Lavernia: Metall. Mater. Trans A, 2003, Vol. 34, pp. 1349-1355.

    Article  Google Scholar 

  27. E. Schafler, M. Zehetbauer, and T. Ungar: Mater. Sci. Eng. A, 2001, Vol. 319, pp. 220-223.

    Article  Google Scholar 

  28. G. K. Williamson and W. H. Hall: Acta Mater., 1953, Vol. 1, pp. 22-31.

    Article  Google Scholar 

  29. T. Ungár, G. Tichy: Physica Status Solidi (a), 1999, Vol. 171 (2), pp. 425–34.

  30. M. Wilkens: Physica Status Solidi (a). 1970, Vol. 2 (2), pp. 359–70.

  31. B. Peeters, M. Seefeldt, C. Teodosiu, S. R. Kalidindi, P. Van Houtte and E. Aernoudt: Acta Mater., 2001, Vol. 49, pp. 1607-1619.

    Article  Google Scholar 

  32. G.J. Richardson, D.N. Hawkins and C.M. Sellars: Worked examples in metalworking, 1985, Institute of Metals, London.

  33. S.A. Argon: Strengthening Mechanisms in Crystal Plasticity, 2008, Oxford University Press, Oxford.

  34. R. Lapovok, F.H. Dalla Torre, J. Sandlin, C.H.J. Davies, E.V. Pereloma, P.F. Thomson, and Y. Estrin: J. Mech. Phys. Solids, 2005, Vol. 53, pp. 729–47.

  35. S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig: Mater. Sci. Eng. A, 2003, Vol. 351(1-2), pp. 86-97.

    Article  Google Scholar 

  36. F.A. Mohamed: Acta Mater., 2003, Vol. 51(14), pp. 4107-4119.

    Article  Google Scholar 

  37. P. Les, M. Zehetbauer, I. Kopacz, and E.F. Rauch: Scripta Mater., 1999, Vol. 41(5).

  38. S.R. Bahadori, K. Dehghani, and F. Bakhshandeh: Mater. Sci. Eng. A, 2013, Vol. 588, pp. 260–264.

    Article  Google Scholar 

  39. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, and R. Valiev: Mater. Sci. Forum, 2011, Vol. 667, pp. 295-300.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazeminezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 3, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkhesht, V., Kazeminezhad, M. Flow Stress Evolution in Further Straining of Severely Deformed Al. Metall Mater Trans A 50, 2371–2380 (2019). https://doi.org/10.1007/s11661-019-05165-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05165-5

Navigation